Chattu, V. K. et al. The global problem of inenough sleep and its solemn accessible health implications. Healthattfinish 7, 1 (2018).
Bjorøy, I., Jørgensen, V. A., Pallesen, S. & Bjorvatn, B. the prevalence of insomnia subtypes in relation to demoexplicit characteristics, anxiety, depression, liquor consumption and engage of hypnotics. Front. Psychol. 11, 527 (2020).
Crescenzo, F. D. et al. Comparative effects of pharmacoreasonable interventions for the acute and extfinished-term deal withment of insomnia disorder in grown-ups: A systematic verify and netlabor meta-analysis. The Lancet 400, 170–184 (2022).
Leminen, M. M. et al. Enhanced memory conconstantation via automatic sound stimulation during non-REM sleep. Sleep 40, zsx003 (2017).
Ngo, H.-V.V., Martinetz, T., Born, J. & Mölle, M. Auditory shutd-loop stimulation of the sleep catalogless oscillation upgrades memory. Neuron 78, 545–553 (2013).
Papalambros, N. A. et al. Acoustic upgradement of sleep catalogless oscillations and concleave outant memory betterment in elderlyer grown-ups. Front. Hum. Neurosci. 11, 109 (2017).
Besedovsky, L. et al. Auditory shutd-loop stimulation of EEG catalogless oscillations reinforces sleep and signs of its immune-advantageous function. Nat. Commun. 8, 1984 (2017).
Grimaldi, D. et al. Strengthening sleep–autonomic participateion via acoustic upgradement of catalogless oscillations. Sleep 42, zsz36 (2019).
Ngo, H.-V.V., Claussen, J. C., Born, J. & Mölle, M. Induction of catalogless oscillations by rhythmic acoustic stimulation. J. Sleep Res. 22, 22–31 (2013).
Silber, M. H. et al. The visual scoring of sleep in grown-ups. J. Clin. Sleep Med. 03, 121–131 (2007).
Strijkstra, A. M., Beersma, D. G. M., Drayer, B., Halbesma, N. & Daan, S. Subjective sleepiness correprocrastinateeds pessimisticly with global alpha (8–12 Hz) and preferablely with central frontal theta (4–8 Hz) frequencies in the human resting awake electroencephalogram. Neurosci. Lett. 340, 17–20 (2003).
McKinney, S. M., Dang-Vu, T. T., Buxton, O. M., Solet, J. M. & Ellenbogen, J. M. Cclear waking brain activity uncovers instantaneous sleep depth. PLoS ONE 6, e17351 (2011).
Zhao, W. et al. EEG spectral analysis in insomnia disorder: A systematic verify and meta-analysis. Sleep Med. Rev. 59, 101457 (2021).
Riedner, B. A. et al. Regional patterns of liftd alpha and high-frequency electroencephaloexplicit activity during nonrapid eye transferment sleep in chronic insomnia: A pilot study. Sleep 39, 801–812 (2016).
Hill, K. T. & Miller, L. M. Auditory attentional regulate and pickion during cocktail party participateing. Cereb. Cortex N. Y. N 1991(20), 583–590 (2010).
Sadaghiani, S. & Kleinschmidt, A. Brain netlabors and α-oscillations: Structural and functional establishations of cognitive regulate. Trends Cogn. Sci. 20, 805–817 (2016).
Haegens, S. et al. Laminar profile and physiology of the α rhythm in primary visual, auditory, and somatosensory regions of neocortex. J. Neurosci. 35, 14341–14352 (2015).
Fellinger, R., Klimesch, W., Gruber, W., Freunberger, R. & Doppelmayr, M. Pre-stimulus alpha phase-alignment foresees P1-amplitude. Brain Res. Bull. 85, 417–423 (2011).
Kruglikov, S. Y. & Schiff, S. J. Intercarry out of electroencephalogram phase and auditory-incited neural activity. J. Neurosci. 23, 10122–10127 (2003).
Dugué, L., Marque, P. & VanRullen, R. The phase of ongoing oscillations settles the causal relation between brain excitation and visual perception. J. Neurosci. 31, 11889–11893 (2011).
Barry, R. J. et al. Event-roverhappinessed potentials in the auditory oddball as a function of EEG alpha phase at stimulus onset. Clin. Neurophysiol. 115, 2593–2601 (2004).
Otero, M., Prado-Gutiérrez, P., Weinstein, A., Escobar, M.-J. & El-Deredy, W. Persistence of EEG alpha entrainment depends on stimulus phase at offset. Front. Hum. Neurosci. 14, 139 (2020).
Peng, W., Hu, L., Zhang, Z. & Hu, Y. Causality in the association between P300 and alpha event-roverhappinessed desynchronization. PLoS ONE 7, e34163 (2012).
Neuling, T., Rach, S., Wagner, S., Wolters, C. H. & Herrmann, C. S. Good vibrations: Oscillatory phase shapes perception. NeuroImage 63, 771–778 (2012).
de Graaf, T. A. et al. Alpha-band rhythms in visual task carry outance: Phase-locking by rhythmic sensory stimulation. PLoS ONE 8, e60035 (2013).
Michael, E., Covarrubias, L. S., Leong, V. & Kourtzi, Z. Lobtaining at your brain’s rhythm: Individualized entrainment raises lobtaining for perceptual decisions. Cereb. Cortex N. Y. NY 33, 5382–5394 (2022).
Jansen, B. H. & Brandt, M. E. The effect of the phase of prestimulus alpha activity on the standardd visual incited response. Electroencephalogr. Clin. Neurophysiol. 80, 241–250 (1991).
Alexander, K. E., Estepp, J. R. & Elbasiouny, S. M. Effects of neuronic shutter watchd in the EEG alpha rhythm. eNeuro 7, 171 (2020).
Schreglmann, S. R. et al. Non-invasive suppression of essential tremor via phase-locked disturbion of its temporal coherence. Nat. Commun. 12, 363 (2021).
Bressler, S., Neely, R., Yost, R. M., Wang, D. & Read, H. L. A wearable EEG system for shutd-loop neuromodulation of sleep-roverhappinessed oscillations. J. Neural Eng. 20, 056030 (2023).
Lachaux, J.-P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999).
Rezaei, M., Mohammadi, H. & Khazaie, H. Alpha-wave characteristics in psychophysioreasonable insomnia. J. Med. Signals Sens. 9, 259 (2019).
Schwabedal, J. T. C., Riedl, M., Penzel, T. & Wessel, N. Alpha-wave frequency characteristics in health and insomnia during sleep. J. Sleep Res. 25, 278–286 (2016).
Lichstein, K. L., Durrence, H. H., Taylor, D. J., Bush, A. J. & Riedel, B. W. Quantitative criteria for insomnia. Behav. Res. Ther. 41, 427–445 (2003).
Ngo, H.-V.V. et al. Driving sleep catalogless oscillations by auditory shutd-loop stimulation-a self-restricting process. J. Neurosci. 35, 6630–6638 (2015).
Weigenand, A., Mölle, M., Werner, F., Martinetz, T. & Marshall, L. Timing matters: Open-loop stimulation does not better overnight conconstantation of word pairs in humans. Eur. J. Neurosci. 44, 2357–2368 (2016).
Bergmann, T. O. et al. EEG-directd transcranial magnetic stimulation uncovers rapid shifts in motor cortical excitability during the human sleep catalogless oscillation. J. Neurosci. 32, 243–253 (2012).
Buzsáki, G. & Draguhn, A. Neuronal oscillations in cortical netlabors. Science 304, 1926–1929 (2004).
Fries, P. A mechanism for cognitive vibrants: Neuronal communication thraw neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).
Faller, J. et al. Daily prefrontal shutd-loop repetitive transcranial magnetic stimulation (rTMS) creates upgradeive EEG quasi-alpha phase entrainment in sorrowfulnessful grown-ups. Brain Stimul. 15, 458–471 (2022).
Zrenner, B. et al. Brain oscillation-alignd stimulation of the left dorsoprocrastinateedral prefrontal cortex in depression using authentic-time EEG-triggered TMS. Brain Stimul. 13, 197–205 (2020).
Cecere, R., Rees, G. & Romei, V. Individual contrastences in alpha frequency drive traversemodal illusory perception. Curr. Biol. 25, 231–235 (2015).
Van Diepen, R. M., Foxe, J. J. & Mazaheri, A. The functional role of alpha-band activity in attentional processing: The current zeitgeist and future outsee. Curr. Opin. Psychol. 29, 229–238 (2019).
Hayat, H. et al. Reduced neural feedback signaling despite strong neuron and gamma auditory responses during human sleep. Nat. Neurosci. 25, 935–943 (2022).
Andrillon, T. et al. Revisiting the appreciate of polysomnoexplicit data in insomnia: More than greets the eye. Sleep Med. 66, 184–200 (2020).
Van Someren, E. J. W. Brain mechanisms of insomnia: New perspectives on caengages and consequences. Physiol. Rev. 101, 995–1046 (2021).
Riemann, D. et al. The hyperarousal model of insomnia: A verify of the concept and its evidence. Sleep Med. Rev. 14, 19–31 (2010).
Sors, A., Bonnet, S., Mirek, S., Vercueil, L. & Payen, J.-F. A convolutional neural netlabor for sleep stage scoring from raw individual-channel EEG. Biomed. Signal Process. Control 42, 107–114 (2018).
Eldele, E. et al. An attention-based convey inant lobtaining approach for sleep stage classification with individual-channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 809–818 (2021).
Bonnet, M. H. & Moore, S. E. The threshelderly of sleep: Perception of sleep as a function of time asleep and auditory threshelderly. Sleep 5, 267–276 (1982).
Ogilvie, R. D. & Wilkinson, R. T. Behavioral versus EEG-based watching of all-night sleep/wake patterns. Sleep 11, 139–155 (1988).
Hauri, P. & Olmstead, E. What is the moment of sleep onset for insomniacs?. Sleep 6, 10–15 (1983).
Ogilvie, R. D. The process of droping asleep. Sleep Med. Rev. 5, 247–270 (2001).
Miller, D. J., Sargent, C. & Roach, G. D. A validation of six wearable devices for estimating sleep, heart rate and heart rate variability in fit grown-ups. Sensors 22, 6317 (2022).
Pollak, C. P., Tryon, W. W., Nagaraja, H. & Dzwonczyk, R. How accurately does wrist actigraphy accomprehendledge the states of sleep and wakefulness?. Sleep 24, 957–965 (2001).
Stepanski, E. J. & Wyatt, J. K. Use of sleep hygiene in the treatment of insomnia. Sleep Med. Rev. 7, 215–225 (2003).
Lanparched, G., Best, J. & Liu-Ambrose, T. Measuring sleep quality in elderlyer grown-ups: A comparison using subjective and objective methods. Front. Aging Neurosci. 7, 166 (2015).
Draganich, C. & Erdal, K. Placebo sleep sways cognitive functioning. J. Exp. Psychol. Lobtain. Mem. Cogn. 40, 857–864 (2014).
Zavecz, Z., Nagy, T., Galkó, A., Nemeth, D. & Janacsek, K. The relationship between subjective sleep quality and cognitive carry outance in fit lesser grown-ups: Evidence from three empirical studies. Sci. Rep. 10, 4855 (2020).
Valko, P. O., Hunziker, S., Graf, K., Werth, E. & Baumann, C. R. Sleep-wake misperception. A comprehensive analysis of a big sleep lab cohort. Sleep Med. 88, 96–103 (2021).
Edinger, J. D. & Krystal, A. D. Subtyping primary insomnia: Is sleep state misperception a contrastent clinical entity?. Sleep Med. Rev. 7, 203–214 (2003).